
JOURNAL OF APPLIED M E C H A N I C S  AND TECHNICAL P H Y S I C S  91 

COMPRESSION AND BUCKLING OF RODS IN CREEP UNDER MONOTONICALLY INCREASING LOADS 

O. V. Sosnin and N. G. Torshenov 

Zhurnal Prikladnoi Mekhaniki  i TekhnicheSkoi Fiziki,  Vol.  8, No. 5, pp. 140-144,  1967 

Exper imenta l  data are presented on the compression of rods in 
creep under loads increasing at  a constant rate.  A method of deter-  
mining  the creep character is t ics  of mater ia l s  under these conditions 
is described and the results are compared with character is t ics  de te r -  
mined by creep tests under constants loads. The results of  buckl ing  
tests on ax ia l ly  compressed hinged rods are deScribed and the ca l -  
cula ted values  of c r i t i ca l  loads (for the same loading conditions) 
obtained by cer ta in  engineer ing methods are given.  

91. Al loy D16T rod specimens (14 mm diameter)  were used in 
the exper iments  conducted at  a constant t empera ture  of 250 ~ 2 ~ C 
a t  four loading rates in range 4. 5 - 0 . 0 0 4 5  k g f / m m  z. sec. The specimen 

gauge portion was 7 ~ 0 .01  m m  in d iamete r  and 40 ~ 0 .1  m m  long 
in compression tests and 62-142  ram tong in buckl ing tests. All  the 
specimens were made  from ma te r i a l  as de l ivered  and were not sub- 

jec ted to any hea t  t rea tment .  The tes t ing machine  and exper imen ta l  
technique  are described in [1]. 

The starting hypothesis was that  instantaneous e las toplas t ic  

strains and t ime-dependen t  creep strains are not re la ted  to each other, 
i.  e . ,  that  the to ta l  strain g may be represented as the sum 

= u~ ((r) -~ p ,  (1. i) 

where the first t e r m  on the r ight-hand side is the instantaneous e las to-  
plastic s train and the second te rm is the creep strain which can be 

deScribed by 

padp ~ KeO~ (1.2) 

Here ~, K, and ~ denote exper imen ta l ly  determined ma te r i a l  

character is t ics ,  ~J is stxess and t is t ime .  Whenthe  load monoton ica l ly  

increases with t i m e  at  ra te  c, the creep s t ra in--af ter  in tegrat ing 
(1 .2 ) - -wi l l  be  described by 

It  is seen from (L  3) that  creep strain decreases with increasing 
loading rate and that,  starting from a cer ta in  ra te  o -> c 0' the creep 
strain does not exceed  the magni tude  of the scat ter  of expe r imen ta l  
points on an ordinary creep curve o(e). Thus, a t  loading rates faster 
than 3 k g f / m m  z. sec a l l  the curveS o(e) merge  to form a narrow band 
in both the elastic and plastic ranges; one may therefore conclude 

that virtually no creep strain is produced at these loading rates. 

Diagrams in which phenomena associated with time are not reflected 

are called instantaneous [2]. 

20 

e 10: 
0 5 70 /5 

Fig. I 

Curves o(s) for rods in compression are shown in Fig. t ,  where 
the numbers 1, 2, 9, and 4 ind ica te  loading rates of 4. 5, 0 .2 ,  O. 01, 

and O. 0045 k g f / m m  z. sec, respect ively.  I t  wi l l  be seen that,  irres- 
pec t ive  of the loading rate applied,  no creep strain is produced at  
stresses below 8 kgf/mmZ; the deformat ion process is e las t ic  in char-  
acter ,  the e las t i c i ty  modulus E being equal  to 5 .6  . 103 k g f / m m  z. 
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Fig. 2 

At higher stresses diagrams obtained at slow loading rates deviate 

from curve I (instantaneous diagram) the difference repreSenting the 

accumulated creep strain; the divergence of the fan of curves o(s) 
considerably increases with decreasing loading rate. In a loading- 
rate range on tile order of 10 "I kgf/mm z. sac, which is of practical 

interest, the difference in the o(6) curves becomes marked when 

the loading rate is reduced or increased by a factor of 3-4. As a 

result, it is possible in these loading-rate intervals to use a linear 

mode of load increase as an approximation of any monotonically 

increasing loading path which considerably simplifies the analysis 

of experimental results. 

The material creep characteristics can be obtained from Eq. 

(L 2) by analyzing experimental data in Fig. I in the following 

way. Measuring the creep strains pj and Pk along a horizontal line 

corresponding to a cer ta in  stress o i, for the distances be tween the 
instantaneous d iagram and diagrams for the loading rates c. and 
c k, respect ively,  and successively substituting these values J into 

(I. 3), we obtain 

(p I p ~ ) ~ + t = % l c ~ ,  (1.4) 

from which the strengthening coeff ic ient  c~ can be  determined.  The 
analysis  of exper imenta l  data showed that  c~ decreases monotonica l ly  
from 0 .3  at  a stress of 12 k g f / m m  a to zero at  a stress of 15 k g f / m m  z 
or mote.  This is in good agreement  with the results of  tests at  constant  

loads which showed that  at  high stress levels  the ma te r i a l  studied 
behaves l i ke  a nonhardening medium.  

If stresses oj and o k corresponding to equal  strains pj = Pk pro- 
duced at  different  loading rates cj and  c k are de termined  and sub- 
st i tuted into (L  3), and i f  the right sides are equated, we obtain 

c i-1 (exp ~'~i - -  l )  : %-t (exp ~'~: - -  t ) ,  (1.5) 

from which I~ can be found. This coefficient is not a constant material 

property either: as the stress increases from I0 to 20 kgf/mm z, B 
monotonically increases in the interval 0.4 -< B <- 0.9 mmS/kgf. 
analogously, if equation 

pet dp = B= n dt , (1.6) 

is used instead of (1.2),  we find that  the exponent n in the above 
stress range varies in the in terval  4 -< n ~ 11. Hence follows that  
relat ions (L  2) and (L  6) may be used to describe creep only in a 

very narrow stress in terval  and that,  genera l ly  speaking, the stress 
dependence of creep is stronger than that  described by power (1.6) 
or exponent ia l  (1.2) functions. 
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If a and B are known and if strains corresponding to various 
loading rates are determined, Eq. (1. 8) can be used to determine 
K (taking its mean vaIue). In view of the wide variation in a and 
~, it is advisable (for the purpose of further analysis) to divide the 
entire stress interval into two ranges for each of which the values of 
a,  I3, and K are then averaged. Thus, we took 

for ~ > 14 kgf/mm z , 

c~=0, fS=0.6mmZ/sec, K=3 .4 .10  -1~ sec -1 ; (1.7) 

for * N< t4 kgf/mm z , 

c, = 0.t3, ~ = 0.44mrnZt~ec, K = t3.2.10 -a~ sec -1. (1.8) 

Diagrams constmcted with the aid of (1. 3) and using constants 
for the appropriate stress intervals and loading rates are plotted in 
Fig. 1 and are shown as dashed lines which coincide rather well with 
the experimental points. 
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Fig. 8 

In this context it is interesting to compare the results obtained 
with experimental data on the creep of the alloy in question under 
constant loads. It was shown in [3] that the creep properties of D16 
alloy in tension and compression are the same and they were there- 
fore compared with experimental results obtained for identical 
specimens tested at the same temperatures and at stresses ranging 
from 8 to 15 kgf/mm z which correspond to the stress interval in which 
the creep is described by the characteristics of (1. 8). It was found 
that curves plotted from (1. 2) using the characteristics of (1. 8) run 
considerably above the experimental points, coinciding with the 
latter only in the first few minutes, 

The solid lines in Fig. 2a represent experimental creep curves 
obtained at stresses indicated by the numbers on each curve (in 
kgf/mmZ), while the dashed lines represent calculated curves obtained 
with the aid of Eq. (1. 2). The picture presented by Fig. 2a is not 
unexpected, since it is known that changing the stress o to a higher 
level is, in the case of hardening materials, accompanied by a 
substantial increase in the intensity of creep at the instant at which 
the stress is increased [4]; this effect is not described by the hypothesis 
of strain hardening (1. 2) and (1.6). When the load is monotonically 
increased, this intensification of creep will take place continuously. 
Thus, if creep characteristics are obtained from experimental data 
relating to increasing stress and applied to describe the creep at 
constant loads, overestimated values will be obtained; conversely, 
using experimental data relating to constant loads will produce 
underestimated (in comparison with experiment) values. The latter 
is quite an important consideration since it means that using char- 
acteristics obtained by experiments at constant loads witl lead to 
errors on the dangerous side (i. e., to underestimating the effects 
of real processes under variable loads), 

If a is assumed to be equal to zero with t~ and K remaining 
unchanged and if Eq. (1. 8) is used again to describe the creep at 
constant loads in the same stress interval, it is found that the cal- 
culated curves on the whole encompass the process almost to the 
beginning of its third stage. Curves of this kind are shown in Fig. 2b 
(dashed limes) with the solid lines representing experimental data 
obtained at the stresses (kgf/mm 2) indicated by the numbers. 

It follows from the above results that creep characteristics in 
Eqs. (1.2) and (1.6) usually determined by experiments at constant 
loads give only a very approximate picture of the real processes 
taking place at variable loads even in the case of such materials 
as the one cited above which do not appreciably hardenl it is obvious 

that in the case of materials whose creep is accompanied by a more 
intense hardening, the discrepancy may be even larger. 

w The above cited creep characteristics of the material in- 
creasing loads were used to analyze experimental data on the buckling 
of hinged cylindrical specimens operating at the same temperature 
and under the same loading conditions. To ensure a hinged support, 
steel ferrules were fitted onto tile specimen ends; the length of the 
specimen pushed into the ferrule with a sliding fit was equal to the 
specimen diameter. The ferrules had prismatic grooves (with an angle 
of 120") for hinged support, while the location of the groove relative 
to the geometric axis of the specimen determined the degree of 
centricity of the applied 1cad trammitted through the knife edges 
of the pnsh-rods; the knife-edges had an angle of 78 ~ and a radius 
of le~ than 0.01 mm. 

The tests were carried out on five batches of specimens of various 
length corresponding to the following flexibilities: X 1 = 85, kz = 4% 
ks = 58, X 4 = 70 and X 5 = 81; the specimen gauge portion was taken 
to be equal to the distance between the knife edges on the push-rods 
which was 2 mm larger than the specimen gauge length. 

In the processing of experimental data only those experiments 
were used in which the initial eccentricity of the applied load was 
close to its technically lowest possible value (not more than a few 
microns) and in which the bending deflection started to increase 
when the increasing load reached a level on the order of 75% of the 
breaking stress (virtually independent of the loading rate) and at 
stresses at which creep should come into play. The stress at which 
the bending deflection started to increase (average value of several 
test results) was taken as the critical stress o *, the breaking stress 
o** being that corresponding to unlimited increase in the bending 
deflection. 

Typical curves representing the time dependence of the bending 
deflection at loading rates on the order of 0.18 kgf/mm z. sec are 
shown in Fig. 3, where the numbers indicated the flexibility (in 
the order of values cited above). The dashed line next to each curve 
corresponds to the time-to-rapture of a given specimen. Qualitatively 
analogous diagrams were obtained (for the same test temperature 
and flexibility range) at other loading rates. 

The experimental data were compared with calculated results 
obtained from certain semiempirieal formulas used to estimate the 
critical stresses and time-to-rupture values of thin-walled columns 
in creep under constant loads [5, 8]. 
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In accordance with [5, 6] it is postulated that a straight rod 
will start to bend after an infinitely small disturbance, when the 
following condition is satisfied; 

= n2Et / ~ 2  (2.1) 
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where E t is the tangent modulus drawn to an isochronous curve o(e) 
at a point corresponding to a certain fixed time which appears as 
a parameter in the family of curves o(e). 

When we have to determine the critical stress for a rod carrying 
a monotonically increasing load, it is natural to take the loading 
rate as the parameter of the family of curves o(~) and to calculate 
E t from the parametric curve corresponding to this rate. Taking 
into account Eqs. (1.1.) and (1. 3), we obtain 

/z'tt ded~ Ei a-, ~-K e~ i-(a q- t) K~_~___ (e ~  ̂- -  i)i -~''(:~+1). (2.2) 

Substituting the value of E t obtained from (2.2) into (2.1), we 
obtain an equation for determining the critical stress ~ corresponding 
to a given loading rate c 

+ - 7  - -  i>} ; = (2.3) 

Values of oi calculated from Eq. (2.3) using the averaged 
characteristics of (1, 7) are given in the third column of the table; 
values of a 1 obtained from (2.3) using the characteristics of (1.8) 
are given in column 4. Since the characteristics of (1. 7) slightly 
underestimate the real creep strain corresponding to stresses of 14 
kgf/mm 2 or more, the critical stresses calculated with the aid of 
these characteristics are somewhat higher than those calculated 
with the aid of the characteristics in (1.8); this obviously applies 
also to other criteria. 

According to [7] it is postuiated that the total strain at which 
a straight rod will start to bend in creep should be the same as 
that at which the rod would buckle under normal loading conditions 

e , = e  0 - k p = n  2 / ~ z  (2. 4) 

Hence, taking into account Eq. (1.3), we obtain an equation 
for determining the critical stress corresponding to a given loading 
rate 

Values of o~ calculated from Eq. (2.5) using the characteristics 
of (1.7) and (1.8) are given in the table, in columm 5 and 6, res- 
pectively. 

If the lateral disturbance is applied sufficiently fast so that 
the outer "fibers" of the rod during bending are slightly relieved 
(despite the active axial load), taking this into account in the 
determination of the critical stress leads to the concept of effective 
modulus. Since the latter depends not only on E and E t but also on 
the moment of inertia of the md cross section, a simplified method 
of calculation was applied by using an ideal "I" cross section for 
the rod instead of its real cross section in estimating the effective 
modulus of rod core. tn this case, after substituting the effective 
modulus 

E**= 2EEt/(E ~ Et), (2.6) 

for E t into the expression for the criticaI stress (2.1) and after some 
simple transformations, we obtain the following equation for deter- 
mining the critical stress corresponding to a given loading rate: 

~xeE == ~ [I @ EK av f(a -~- t) K ~ ]-=/(=+r)l ~--r., ~e . "  i----r --i)} J. (2.~) 

The corresponding values of ~ calculated from (2.7) using the 
characteristics of (1.7) and (1.8) are given in the table, in columns 
7 and 8, respectively. 

Columns 9 and 10 in the table give the experimental values of 
the critical (G*) and breaking (o **) stresses. It will be seen that 
as the flexibility of the rod increases, o * and o ** become less 
markedly dependent on the loading rate, so that the critical stress 

of rod with k -> 70 may be estimated without taking creep into 

account. 

The dependence of the critical stress on X for two different 

loading rates (4. 5 and 0. 0045 kgf/mmZ, sec) is shown in Fig. 4. 
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Fig. 4 

The solid line represents the Euler hyperbola; the dashed lines 

represent curves calculated from Eq. (2.8), the dot-dash lines 
representing curves calculated from Eq. (2.5) and the dotted lines 
representing the curves calculated from Eq. (2.7). Both families 

of curves were constructed for the characteristics of (I. 7). Open 

ciroles in Fig. 4 denote experimental values of o* (from the table) 

in relation to k at loading rates of several kgf/mm2.sec, the corres- 

ponding values of o* obtained at loading rates on the order of I0 -s 

kgf/mm ~. sec being represented by the black circles. Qualitatively 

analogous families of curves are obtained for other loading rate 

intervals. 

Data reproduced in the table and in Fig. 4 show that, in all 
the imervals of the axial loading rate and rod flexibility studied, 
curves calculated with the application of the tangem modulus are 
closest to the experimental data; curves calculated from the criterion 

r -- const deviate more from experiment, the deviation being even 

more pronounced in the case of curves calculated with the application 

of the effective modulus; in the last two cases the deviation is in the 

dangerous direction, giving critical stress values higher than those 

determined by experiment. 
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